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2 A. BUJA ET AL.

1. INTRODUCTION

We extend the model-robust framework of Part I from linear OLS to arbitrary
parametric regression methods based on iid z-y observations. The point of view
is that regression models are approximations and should not be thought of as
generative truths. Because parameters of a working model define quantities of
interest only under conditions of model correctness, it is necessary to extend the
parameters beyond the model. In doing so one arrives at the functional point of
view of regression, where parameters are not merely labels for the distributions
in the model; instead, they are statistical functionals defined on quite arbitrary
joint x-y distributions. They will be called “regression functionals.”

The move from traditional regression parameters to regression functionals does
not imply that every functional produces meaningful values on every distribution.
It is rather held that the problem of defining a quantity of potential interest should
be separated from the question of its meaningfulness. Having a quantity defined
as a regression functional on a broad class of distributions creates the freedom to
decide on which distributions the quantity is insightful. In actual data analysis it
is possible that diagnostics reveal a model to be misspecified in some ways, and
yet one may want to retain it for its interpretability.

Regression models are chosen to a large extent based on the measurement
type of the response (including: interval scale, ratio scale, counting, binary, multi-
categorical, spatial, multi-response), as when choosing a suitable generalized lin-
ear model. The model-robust regression framework described here applies to all
response types as long as the observations are iid (we hence exclude correlated
data such as time series). If the specifics of the regression situation are inessential
for the framework, its essentials are as follows:

e The variables are divided into regressor and response variables, denoted
X and Y, respectively (the typographic distinction being a hold-over from
Part I where regressors are multi-dimensional and responses uni-dimensional,
an assumption that is no longer made).

e The association between X and Y is described asymmetrically by focusing
on the conditional response distribution Y|X' while attempting to ignore
the marginal distribution of the regressors X , thought to be “ancillary”.

In parametric regression modeling one assumes a parametrized family of condi-
tional response distributions {QY])Z’;B : @ €O} or, in terms of densities, {q(y|Z; 0) :
0 € ®}. The model-robust point of view is not to trust such models but use them
pragmatically to construct regression functionals.

Because regression functionals are at the core of the framework, a first goal
here is to catalogue some of the ways of constructing them: (1) optimization
of objective functions, in particular maximum likelihood based on a working
model, and (2) solving estimating equations, in particular the score equations of
a working model. Thus the two ways have strong overlap, but it is the literature
on estimating equations where the functional point of view of parameters is more
firmly embedded. This first part of the article is purely tutorial and not original,
but a necessity in light of what follows.

The second and most original goal of this article is to introduce a notion of
mis- and well-specification for regression functionals. While it is clear what this
notion means in the context of parametric models, it is less clear that a related
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notion of mis/well-specification can be defined for regression functionals. Here
are some thoughts based on linear OLS that should make the idea plausible:

e Consider the slopes in a multiple linear regression and ask when they are
most meaningful. The “obvious” answer would refer to well-specification of
the model, YNN(X"B,JQ), but this is too strong: homoskedasticity and
Gaussianity are not immediately related to slopes which describe linearity of
the conditional response mean. Hence a weaker condition is more plausible:
the slopes 3 are perfectly meaningful if the the conditional mean function
is linear, E[Y|X] =@ X. Equivalently, the gradient VzE[Y|X = & = 3
exists and is constant.

e Next consider the average noise variance, measured by a regression func-
tional defined as o2(P)=E[V[Y|X]], and ask when it is most meaningful.
Again the obvious answer is “under model well-specification”, but a weaker
and more plausible condition is homoskedasticity: V[Y|X = &] = o2 for
(almost) all Z.

These examples have a shared feature: In the scenarios where these quantities are
most meaningful, they are constant across regressor space. A constant gradient
implies linearity and a constant conditional response variance means homoskedas-
ticity. Such constancy, if it holds, confers special meaning to the value of the
functional because it characterizes the conditional response distribution across
all locations in regressor space; it is not some compromise of different values in
different locations. It is therefore sensible to make this condition of constancy
across regressor space the basis of what it means to say a regression functional is
well-specified for a particular data distribution.

The condition requires an important modification before it reaches its final
form, and the remaining issue can again be illustrated with slope functionals: a
slope at a point & is mathematically a partial derivative and requires knowledge
of E [Y|X' =&]| in a neighborhood of &. Statistically, the issue can be resolved by
replacing locations & with (non-collinear) regressor distributions. The question
of constancy across regressor space can therefore be recast as constancy across
(acceptable) regressor distributions. With this final step we have arrived at a
coherent definition of well-specification for regression functionals which we state
informally as follows:

Definition: A regression functional is well-specified for a conditional re-
sponse distribution of Y| X if the functional does not depend on the marginal
regressor distribution of X.

Intuitively the meaning of this notion of well-specification is that the target of
estimation is independent of where in regressor space the response is observed.
This being an ideal, in the world of real data where misspecification is the rule
rather than the exception, it should be expected that the target of estimation
does depend on where in regressor space the response is observed.

Leveraging this notion of mis/well-specification for regression functionals, a
third goal of this article is to extend to all types of regression the important fact
(described in Part I) that, under misspecification, sampling variability of linear
OLS estimates has two sources:

e the noise € = Y — E[Y|X];
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4 A. BUJA ET AL.

e the nonlinearity n(X) = E[Y|X]-8' X.

A difficulty in attempting a generalization to arbitrary regression functionals
and their plug-in estimates is that the notions of noise and nonlinearity are not
available in all types of regressions. However, the following formulation proves
to be universally applicable: The sampling variability of plug-in estimates of all
regression functionals has two sources,

e the first source being Y\X’ , the X-conditional randomness of the response Y;
e the second source being the randomness of X in the presence of misspeci-
fication.

Here a fortuitous feature of our definition of mis/well-specification comes to light:
If the regression functional is well-specified for Y\X' , its value is the same for all
X distributions, including the empirical X distributions of observed data. As a
result, under well-specification there does not exist sampling variability due to X.
Conversely, if there is misspecification, the functional will vary between empirical
X distributions and hence generate sampling variability in estimates. What was
a “conspiracy of nonlinearity and random-X” for linear OLS in Part I is now
a “conspiracy of misspecification and random X”, where “misspecification” has
the above technical meaning for regression functionals. — As in Part I for linear
OLS, we will describe three CLTs, one for the full sampling variability and one
each for the components due to Y]X' and X , respectively.

A fourth and final goal is to generalize a result of Part I that links two types
of model-robust frequentist inference: the x-y bootstrap (as opposed to the resid-
ual bootstrap) and the plug-in method applied to asymptotic variance formulas
(which usually results in sandwich estimators). To this end we require again a
generalized version of the bootstrap whereby the resample size M can differ from
the sample size N. It will be seen that the argument of Part I generalizes in full:
plug-in estimators are always limits of the M-of-N bootstrap as M — oc.

The article proceeds as follows: Section 2 describes some of the ways in which
regression functionals can be defined. Section 3 introduces the notion of mis/well-
specification for a regression functional on a given conditional response distribu-
tion. Section 4 explains the canonical decomposition of sampling variability under
misspecification for plug-in estimates of regression functionals. Section 5 recounts
relevant model-robust CLTs for plug-in estimates of regression functionals. Sec-
tion 6, finally, describes the connection between plug-in estimators and bootstrap
estimators of standard error.

Remark 1: Model robustness is not the same as classical outlier/heavy-tail ro-
bustness. In regression the latter generally questions the assumed error distribu-
tion but not the fitted equation. As presented here, model robustness questions
both and retains only the (equally questionable) assumption of iid sampling.
Some types of model-robust theory that relax the iid assumption by allowing
time series structure are common in econometrics (e.g., White 1994).

Remark 2: The idea of model robustness has a long history that includes Hu-
ber (1967), Kent (1982), and a long tradition of theorizing about misspecification
starting with White (1980a, 1980b, 1981, 1982). While the idea that models are
not “truths” is widely accepted, it is necessary to understand that the acceptance
of “misspecification” and the view of “models as approximations” has real con-
sequences for the targets of estimation, the sources of randomness in estimation,
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and the types of inference that are valid under misspecification.

2. TARGETS OF ESTIMATION: REGRESSION FUNCTIONALS

This section first lays out some assumptions about the universe of distributions
on which a regression functional is defined. The section subsequently describes
two ways of constructing regression functionals.

2.1 Preliminaries on Joint Distributions

The population description of regression based on observational data is in terms
of two random variables that take on values in respective measurable spaces: the
regressor X: Q — X and the response Y: £ — ) with a joint distribution PY7 %2
conditional response distribution Pﬂ % and a regressor distribution Pg. We may
express the connection between them using the notation

PY,X" = PY]X’ & PX"
As mentioned earlier, the typographic distinction between X and Y is a hold-over
from the OLS context of Part I where X denoted a random vector of quantitative
regressor variables and Y a quantitative response variable. This is no longer as-
sumed and the regressor and response spaces X and ) are now entirely arbitrary.

When defining a regression functional 6(P), one needs to specify a set P of
joint distributions P:PY7 % for which the functional is defined. This set can be
specific to the functional in several ways. Here is a list of conditions on P that
will be assumed as needed:

e Expectations will be assumed to exist for all distributions in P.

e If the functional derives from parameters of fitted equations, it will be
assumed that the regressor distribution Pg grants identifiabiliy of the fitted
parameters, as when collinearity of the regressor distribution needs to be
excluded in order to uniquely fit linear equations. If this is the case we will
say Pg is an “acceptable” regressor distribution.

e With the preceding bullet in mind, we will assume that if a regressor dis-
tribution Py is acceptable, a mixture aPyg + (1—«)Pg’ with any other
distribution PX/ will also be acceptable. The reason is that mixing can
only enlarge but not diminish the support of the distribution, hence identi-
fiability of fitted parameters will be inherited from Pg irrespective of PX/ .

e The preceding bullet ensures that the set of acceptable regressor distribu-

—

tions is rich, in fact so rich that Ep_ [f(X)] = 0 for all acceptable Py entails
f=0.

e For working models {QY| %00 0 €O} (not treated as well-specified) it will
be assumed QY] %0 ® Py € P for all 0 €© and all acceptable Pg.

e Where conditional model densities ¢(y|&; @) of the response appear, they
will be with regard to some dominating measure v(dy).

e For plug-in estimation it will be required that empirical distributions P =
Py arising as N iid draws from P € P will be in P with probability 1. This
requirement can be limited to sufficiently large N. For example, one needs
N > p+1 non-collinear observations in order to fit a linear equation with
intercept using OLS on a p-dimensional regressor space.
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6 A. BUJA ET AL.

e To form influence functions for regression functionals, it will be assumed
that for P€P and (y,Z) € X' x)Y we have (1-t)P +td, z € P for 0<t<1.
e P will be assumed to be convex, hence closed under finite mixtures.

2.2 Regression Functionals from Optimization — ML and PS Functionals

In Part I we described the interpretation of slopes in linear OLS as regression
functionals. The expression “linear OLS” is used on purpose to avoid the expres-
sion “linear models” because no model is assumed. Fitting a linear equation using
OLS is a procedure to achieve a best fit of an equation by the chosen criterion.
This approach can be generalized to other objective functions £(0;y, Z):

6(P) := argming.g Ep[L(6;Y, X))

A common choice for £(0;y,Z) is the negative log-likelihood of a parametric

=

regression model for Y| X given by conditional response distributions {QW %0
0 € ®} with conditional densities {¢(y | Z;0): 0 € ®}, where 0 has the traditional
meaning of a parameter. Not assuming the model to be well-specified, its only
purpose is to serve as a heuristic to suggest a meaningful objective function:

L(0;y,Z) = —logq(y|Z;8).

The resulting regression functional will be called a ML functional. (For technical
conditions under which it is well-defined see White (1982) and Huber (1967).)
ML functionals are fundamental because they naturally extend traditional pa-
rameters of major classes of regression models such as GLMs. Technically, they
also comprise M-estimators based on Huber p functions (Huber 1964), including
least absolute deviation (LAD) or L; objective functions for conditional medians,
and tilted L versions for arbitrary conditional quantiles. All of these objective
functions can be interpreted as negative log-likelihoods of certain distributions,
even if they may not usually be interpreted as viable models for actual data. Not
in the class of negative log-likelihoods are objective functions for M-estimators
with redescending influence functions such as Tukey’s biweight estimator.

A natural extension of ML functionals is in terms of so-called “proper scoring
rules”, the subject of Appendix A. The regression functionals that result may be
called “proper scoring or PS functionals”, a superset of ML functionals. Proper
scoring rules can be used to form discrepancy measures between a conditional
response distribution Pﬂ % and model distributions QY] %0 generalizing the ex-
pected negative log-likelihood of the conditional response distribution with regard
to the model, E[—log ¢(Y|Z;6) | X =&]. The discrepancy measure between Pz
and Qm %0 is then averaged with regard to the regressor distribution Pg, which

in the case of the negative log-likelihood results in Ep[—logq(Y|X;0)]. This
average discrepancy is the crition whose minimization with regard to @ defines
the value of the PS functional 8(P) for the data distribution P. PS and hence
ML functionals have the important property of Fisher consistency:

(1) P=Qy 34 ®P; = 0(P)=6s

See Appendix A for the connections of PS functionals to Bregman divergences
and outlier /heavy-tail robustness.
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Further objective functions are obtained by adding parameter penalties to
existing objective functions:

(2) L(6;y,Z) = L(O;y,Z) + AR(O).

Special cases are Ridge and Lasso penalties. Note that (2) results in one-parameter
families of penalized functionals 8 (P) defined for populations as well, whereas
in practice penalty parameters are thought to apply to finite data with Ay —0.

2.3 Regression Functionals from Estimating Equations

Objective functions are often minimized by solving stationarity conditions that
amount to estimating equations for the scores 1(0;y, &) = —VoL(0;Y, X):

(3) Ep[(0;Y,X)] = 0.

One may generalize and define regression functionals as solutions in cases where
P(0;y, &) is not the gradient of an objective function; in particular it need not
be the score function of a negative log-likelihood. Functionals in this class will
be called “EE functionals.” For OLS, the estimating equations are the normal
equations, as the score function for the slopes is

(4) Yors(B;y, &) = dy—2& B = T(y—&' B).

A seminal work that inaugurated asymptotic theory for general estimating equa-
tions is by Huber (1967). A more modern and rigorous treatment is in Rieder (1994).

An important extension is to situations where the number of moment condi-
tions (the dimension of %)) is larger than the dimension of 6. This is known as
“Generalized Method of Moments” (GMM, Hansen 1982) which can be used for
causal inference based on numerous instrumental variables.

Another extension is to situations where clustered data have intra-cluster de-
pendence, known as “Generalized Estimating Equations” (GEE, Liang and Zeger
1986). This is a fixed-X approach that assumes well-specification of the mean
function but allows misspecification of the variance and intra-cluster dependence.

2.4 The Point of View of Regression Functionals and its Implications

Theories of parametric models deal with the issue that a given model param-
eter has many possible estimators, as in the normal model N(u,0?) where the
mean is in various ways the optimal estimate of pu whereas the median is a less
efficient estimate. The comparison of estimates of the same traditional parame-
ter has been proposed as a basis of misspecification tests (Hausman 1978) and
called “test for parameter estimator inconsistency” (White 1982)). In a frame-
work based on regression functionals the situation presents itself differently: em-
pirical means and medians, for example, are not possibly inconsistent estimators
of the same parameter; rather, they represent different statistical functionals with
associated plug-in estimators. Similarly, slopes obtained by linear OLS and lin-
ear LAD represent different regression functionals. Comparing them by forming
differences creates new regression functionals that may be useful as diagnostic
quantities, but in a model-robust framework there is no concept of “parameter
inconsistency” (White 1982, p.15), only a concept of differences between regres-
sion functionals. Whether OLS or LAD should be used is not a matter of right
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or wrong but of extraneous considerations that may include differences in the
degrees of misspecification in the sense of Section 3 below.

In a similar vein, in a model-robust theory of observational (as opposed to
causal) association, there is no concept of “omitted variables bias.” There are
only regressions with more or fewer regressor variables, none of which being “true”
but some being more useful or insightful than others. Slopes in a larger regression
are distinct from the slopes in a smaller regression. It is a source of conceptual
confusion to write the slope of the j'th regressor as f3;, irrespective of what
the other regressors are. In more careful notation one indexes slopes with the
set of selected regressors M as well, 8.5, as is done of necessity in work on
post-selection inference (e.g., Berk et al. 2013). Thus the linear slopes (3;.as and
Bj.m for the j'th regressor, when it is contained in both of two regressor sets
M # M’, should be considered as distinct regression functionals. If M C M’, then
Bj.mr — Bj.m is not a bias but a difference between two regression functionals. If it
is small in magnitude, it indicates that the difference in adjustment between M
and M’ is immaterial for the j’th regressor. If §;.a;» and Bj.ar are very different
with opposite signs, there is a case of Simpson’s paradox for this regressor.

It should further be noted that regression functionals depend on the full joint
distribution PY7 % of the response and the regressors, not just the conditional re-
sponse distribution B, ¢. Conventional regression parameters characterize only
the conditional response distribution by assuming it to be of the form B,4 =
QY] %.9> While the regressor distribution Pj is sidelined as ancillary. That the
ancillérity argument for the regressors is not valid under conditions of misspeci-
fication was documented in Part I, Section 4. In the following Section 3 this fact
will be the basis of a new concept of misspecification for regression functionals.

3. MIS-/WELL-SPECIFICATION OF REGRESSION FUNCTIONALS

The introduction motivated a notion of mis/well-specification for regression
functionals, and this section provides the technical notation. Before the reader
continues, he/she may want recall the intuitions given in Part I, Section 4, Propo-
sition 4.1, and in particular Figure 2. The proposition shows for the slope func-
tional of linear OLS that it depends on the regressor distribution if and only if
the response function is nonlinear. This condition is so intriguingly generalizable
that it lends itself as a master definition of mis/well-specification for arbitrary
regression functionals in arbitrary types of regressions. An attractive feature of
this notion is that it speaks precisely to the specific property of distributions P
that is measured by the regression functional 8(P) without commitment to a
model and the peculiar distributional properties implied by it.

3.1 Definition of Well-Specification for Regression Functionals

The starting point is to decompose the joint distribution P = PY’ % into two
components: the conditional response distribution P, 3 and the marginal regres-
sor distribution Pg. In general, conditional distributions are defined only almost
surely with regard to Pg, but we will assume that & — PY| %_gz 18 a Markov
kernel defined for all & € X (that is, we assume that a “regular version” is cho-
sen). With these conventions, PYW % and Py uniquely determine PY7 %> but not
quite vice versa. As before we write B, g = P,z © Pg and reinterpret 6(-) as a

imsart-sts ver. 2014/07/30 file: Buja_et_al_Conspiracy_Part_II.tex date: December 10, 2016



MODELS AS APPROXIMATIONS II 9

functional of these two arguments:

6(P) = 6(P, 3 ® Pg).

Definition: The regression functional 6(-) is well-specified for PY]X if
0(P,x ® Pg) = 0(B, 3 ® Pg)
Jor all acceptable regressor distributions Py and P)i(.

As indicated in Section 2.1, the term “acceptable” accounts for exclusions of
regressor distributions such as non-identifiability when fitting equations, in par-
ticular perfect collinearity when fitting linear equations.

Remark: Importantly, the notion of well-specification is a joint property of a
specific 8(-) and a specific PY] - A regression functional will be well-specified for
some conditional response distributions but not for others.

Caveat: Any notion of well-specification represents an ideal, not a reality. Well-
specification in any meaning of the term is never a fact; real are only degrees of
misspecification. Yet, ideals are useful because they spell out the circumstances
under which a lofty goal is perfectly realized. Here the goal is that measure-
ments of the Y])_f association be independent of where in regressor space the
observations are taken.

3.2 Well-Specification — Some Exercises and Special Cases

Before stating general propositions, here are some special cases to train intuitions:

e The OLS slope functional is B(P) = E[XX'] 'E[X u(X)], where u(&) =
E[Y|X = &). Thus B(P) depends on P, only through the conditional
mean function. The functional is well-specified if u(Z) = B,  is linear, in
which case B(P) = 3. The reverse is true, too; see Part I, Proposition 4.1.

e Ridge regression also defines a slope functional. Let 2 be a symmetric
non-negative definite matrix and @' Q3 its quadratic penalty. Solving the
penalized LS problem yields 3(P) = (E[XX'] + Q) 'E[Xu(X)]. This
functional is well-specified if the conditional mean is linear, u(&) = By &,
and Q = cE[XX'] for some ¢ > 0, in which case B(P) = 1/(1+¢) By,

causing uniform shrinkage.

e The point of regression functionals is that they describe the association
between a response variable Y and regressor variables X. However, for a
quantitative response Y, what does it mean for the functional 6(P)=E[Y]
to be well-specified for PYW %7 It looks as if it did not depend on the regressor
distribution and is therefore always well-specified. This is of course a fallacy:
writing E[Y]= [ E[Y|X =&] Pg(dZ), it follows that E[Y] is independent
of Py iff the X -conditional mean is constant: E[Y|X =&] = E[Y] V&.

e The average conditional variance functional o2(P) = E[V[Y|X]] is well-
specified iff V[Y|X = & =0 is constant, in which case 0?(P) = o3.
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e Fitting a linear equation by minimizing least absolute deviations (i.e., the
LAD or L; objective function) defines a regression functional that is well-
specified if there exists B, such that median[Pm;(:j] = By & for all &.

e A meaningless case of “misspecified functionals” arises when they do not de-
pend on the conditional response distribution at all: B(PY] 2 ®@Pg) =0(Pg).
Examples would be tabulations and summaries of individual regressor vari-
ables. The point of such functionals is to characterize the marginal regressor
distribution Pg alone. They could not be “well-specified” unless they are
trivial constants.

3.3 Well-Specification of ML, PS and EE Functionals

The following lemma, whose proof is obvious, applies to all ML functionals. The
principle of pointwise optimization in regressor space covers also all PS functionals
(see Appendix A, equation (10)).

Lemma 3.3.1: If 6y minimizes Ep|L(Y|%;0)| X = &) for all & € X, then
the minimizer O(P) of Ep[L(Y|X;0)] is well-specified for P, % . Furthermore,
G(PmX ® Pg) = 6q for all acceptable regressor distributions Pg.

The corollary below is a consequence of the lemma above but could have been
gleaned from Fisher consistency (1), which holds irrespective of the regressor
distribution Pg:

Corollary 3.3.2: If6(-) is a PS or ML functional for the working model {Qm“ce:
0O}, then 6(-) is well-specified for all model distributions QHX-G'

The next fact states that an EE functional is well-specified for a conditional re-
sponse distribution if it satisfies the EE conditionally and globally across regressor
space for one value 6.

Lemma 3.3.3: The EE functional 6(-) defined by Ep[y(6;Y,

—

Y,X)] = 0 is well-
specified for P, VX iff there exists Oy such that Ep[(0y;Y, X)| X

=] = 0 VE.
The proof is in Appendix C.

3.4 Well-Specification and Influence Functions

To state the next fact, we will make heuristic use of influence functions, which
will be useful for the asymptotics of regression functionals in Section 5. (For a gen-
eral treatment of influence functions see Hampel et al. (1986) and Rieder (1994).)
The influence function of a regression functional, when it exists, is a form of
derivative on the space of probability distributions. It is intuitive to use influence
functions to characterize well-specification of regression functionals because if the
functional O(Pﬂ % @ Pg) is constant in the argument Py at a fixed PY] %> then
this means intuitively that the derivative wrt Pg vanishes. The definition of the
influence function in terms of P=P, VX is as follows

(5) IF(y, &) = —| O((1—t)P+t5,).
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We omit 0(-) as well as P = PY7 % as arguments of IF' because both will be
clear from the context, except for one occasion in Appendix B where we write
IF (y, &; P). More relevant is the following definition of the partial influence func-
tion with regard to the regressor distribution:

d

(6) IF(@@) = -

‘t:O 0 (Pm)_{' & ((1—t)PX- + téi))
The proof of the following lemma is in Appendix B:

Lemma 3.4: IF (%) = Epy‘x [IF (Y, X)| X =&].

We will use as notations either IF(Z) or E[IF(Y,X)|X = Z], lightening the
notational burden in the latter by dropping the subscript PY] i of E[].
See again Appendix B for a proof of the following;:

Proposition 3.4: A regression functional 6(-) with an influence function at P,
18 well-specified for PYD? iff IF(Z)=0 VZ.

Influence functions will prove useful for approximations in Sections 4.5 and for
asymptotics in Section 5.

3.5 Reweighting and Well-Specification

Mis/well-specification of functionals relates in useful ways to reweighting of
data which can be leveraged for misspecification tests as well as nonparametric
extensions:

Assumptions and Notations: Consider reweighted versions of the joint distri-
bution P = PY,)? with weight functions w(&) that depend only on the regressors,
not the response:

P, 3 () =w(@)Py 3 (dZ); iy, &) = w(@)p(y, T),
where w(&) >0 and Ep[w(X)]=1. Shortened notation: P = w(X)P.

Proposition:If the regression functional 0(-) is well-specified for PypZ’J it is un-

changed under arbitrary reweighting: 0(PB,, ¢) = 0(B, ).
Proof: The conditional response distribution is unchanged under Z-dependent
reweighting: PY| %= PY] %> and a well-specified regression functional is unchanged

under a change of the regressor distribution, PX(da_f) = w(Z)Pg(dz). O

In fixed-X theories, which necessarily assume well-specification of the model,
it is common currency that reweighting the data grants consistent estimation of
parameters. Translated to the current framework, this fact returns as a statement
of invariance of well-specified functionals under X-dependent reweighting.

Reweighting can be used to devise misspecification tests as described by White
(1980a, Section 4) for linear OLS. The idea generalizes to arbitrary types of regres-
sion and regression functionals: One tests the null hypothesis that the difference

—

0(w1(X)P) — 0(wy(X)P) vanishes for two Z-dependent weight functions, wy(-)
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Fi1G 1. Misspecification Diagnostics Based on Reweighting: How stable is a regression coefficient
when the data are reweighted as a function of its regressor?
Data: Counts of homeless in a sample of census tracts of LA as a function of various regressors;
see Part I, Section 2 (Berk et al. 2008).
Vertical axis = regression coefficient
Horizontal axis = regressor
Traces = regression coefficient as a function of the reweighting center
gray traces = weighted bootstrap samples,
black trace = weighted observed data
Points on left: unweighted coefficient, not a function of the horizontal axis
gray points = unweighted bootstrap samples
black point = unweighted observed data
Vertical line segments = confidence intervals, =2 bootstrap standard errors
The weights are Gaussian, centered (u) at the deciles of the regressor distribution,
with dispersion (o) = 1 standard deviation of the regressor distribution.
Horizontal line = 0 level to judge statistical significance
Some Conclusions:
(1) Both MedianInc and PercVacant appear more statistically significant under reweighting (see
traces) than without (see points on left and compare with the 0 level line). Their traces are not
flat but they stay more removed from the 0 level compared to the unweighted bootstrap values
(points on left).
(2) PercMinority appears to be negatively associated with the response for low values, but posi-
tively associated for high values.
(8) The coefficient of PercIndustrial is most well-specified, but it is statistically insignificant.
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MODELS AS APPROXIMATIONS II 13

and wa(+). Inference for such differences can be based on the non-parametric z-y
bootstrap (see Part I, Section 8, as well as Section 6 below).

Generalizing the idea and using many — possibly infinitely many — weight
functions provides a natural bridge from parametric to nonparametric regression,
namely, by using reweighting functions that are “running Parzen kernels” as, for
example, in local linear smoothing. The following are a few steps to describe
the general idea of localizing regression functionals when the regressor space is

IR?: Let wé(:ﬁ) be a family of Parzen kernels, each member centered in some
sense at a location E in regressor space, an example being a Gaussian kernels
wg(Z) ~ exp(—|Z — €|1?/(20?)). Then wg (&) = wg(®)/Elwg(X)] is a weight
function that is normalized for Pg at each E Finally obtain the value of the

regression functional localized at E :
(7) 0¢(P) = 0(wg(X) P, 5 ).

Two special cases:
o If 6(P) = E[Y], then £ — 0z(P) is a regularized approximation to the
response surface € — E [Y]X" zf], the result of local averaging.

e If O(-) is the linear OLS functional, then Og(P) consists of a local intercept

and local slopes at each location E, which we can t}Link of as a regular-
ized gradient. If we define f(§) := OE(P)’S, then f(&) is a locally linear

approximation to the response surface é’ — F [Y|X’ :E]

Estimating smooth functions and comparing them to linear ones has been a
diagnostic idea for some time, and a particularly useful approach along these
lines is by fitting additive models (Hastie and Tibshirani, 1990). In the next
subsection we will pursue a different diagnostic idea that stays closer to the
regression functional of interest.

3.6 A Model Diagnostic Based on Reweighting

The following diagnostic is directly inspired by the definition of mis/well-
specification of regression functionals. The simple idea is to check the constancy
of a regression functional under localized reweighting of the data. We will focus
on the case where the functional is a regression coefficient associated with a par-
ticular regressor variable. In the simplest case this is the coefficient 3; = 3;(P) of
regressor X; in linear OLS as layed out in Part I. Because of the analytical con-
nection between 3; and X; we expect that strong sensitivity of this functional to
reweighting is achieved when the weights are a function of X;. A simple example
is a univariate Gaussian weight function centered at &:

we(z5) ~ exp(—(z; = )*/(20%)),  welz)) = we(x;)/Elivg(X;)].
A diagnostic is obtained by plotting 3; as a function of £:
§ = Bieg(P) = Bj(we(X;) P).

If the regression functional f3;(-) is well-specified, then f;¢(-) is constant in &.
Conversely, if 3 ¢(+) is not constant, then f3;(-) is misspecified. This is of course
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only a sufficient and not a necessary criterion, but from the way the weights are
constructed we expect some power from this diagnostic for detecting misspecifi-
cation in the sense of Section 3.1.

To make the approach actionable, one obtains estimates 3;¢ = (;(we(X;)P),
where w¢(z;) is a weight function that is empirically normalized to unit mass:
E[i¢(X;)] = 1. For Gaussian weights centered at & one may use wg(x;) ~
exp((z; — €)?)/(2(a6;)?), where 6, is the empirical standard deviation of X;
and « is a bandwidth parameter to be chosen a priori (a simple choice is a=1).
Estimates BAM can be obtained for a grid of values £ € {1, ..., &k }, a simple choice
being the nine interior deciles of the empirical X; distribution (K =9). The re-
sulting K values of Bj,fk can be drawn as a trace over the grid values &, and they
can be compared to the unweighted estimate Bj.

The scheme just described is carried out in Figure 1 for the LA homeless data
that were used in Part I, Section 2. A general issue with diagnostics is that they
leave a fundamental question unanswered: Does the trace & +— Bj7fk vary in a
statistically significant way to allow the inference that the statistical functional
B;(P) is misspecified? To answer this question one would need direct inference for
differences Bj,{k — ijﬁk' (k # k') as well as Bj,{k — Bj- We found it, however, more
useful to decorate the graphical traces with bootstrap replications and bootstrap
confidence intervals, as shown in Figure 1. The question as to the existence of
misspecification is in our experience less interesting because misspecification is
nearly universal. More interesting is the question as to the nature of the misspec-
ifications, and answering this question is greatly assisted by the bootstrap-based
decors added to Figure 1. There is no need to give here a detailed discussion of
the displays as the graphical details are explained in the figure caption; examples
of conclusions that can be drawn from the displays are given toward the end of
the caption.

A surprising general experience is that reweighted estimates Bj,&k can be less or
more statistically significant than the unweighted estimate Bj- It can also occur
that reweighted estimates Bj,&k may change signs from one end of the grid (&)
to the other end (£x), even in a statistically significant fashion (see the regressor
PercMinority in Figure 1). This possibility may be less surprising if the values
Bj,&k are interpreted as local estimates of the derivative of the X;-marginalized
response surface.

Stepping back from the minutiae of implementing a reweighting diagnostic
and devising inference for it, it should be noted that the resulting mis/well-
specification tests do not rely on buy-in into traditional models. The notion of
well-specification and inferential diagnostics provided here concern a quantity
of interest, that is, a regression functional. In linear OLS, for example, if the
quantities of interest are the slopes or, for that matter, a subset of the slopes,
there is no need to diagnose linearity with regard to slopes of no interest or
constancy of the noise variance or normality of the noise distribution. The idea of
reweighting the data is a universal device to diagnose and test well-specification
of exactly the quantities of interest in most types of regression.
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4. ESTIMATION OF REGRESSION FUNCTIONALS:
CANONICAL DECOMPOSITION OF ESTIMATION OFFSETS

4.1 Regression Data and Plug-In Estimation

We adopt some of the notations and assumptions from Part I, Section 5: Data
consist of N iid draws (Y5, Xl), the responses are collected in a structure Y, and
the regressors XZ in another structure X. We purposely avoid the terms “vector”
and “matrix” because in a general theory of regression all variables — responses
and regressors — can be of any type and any number. As mentioned earlier, the
typographic distinctions between response and regressors are a carry-over from
Part I that have no bearing anymore: the response Y; could be vectorial, as it
would be in multi-response situations, or when categorical multi-class outcomes
are coded with dummy vectors for the classes. Thus both Y and X are best
thought of as “data frames” in R (2008) terminology. Regression of Y on X is
any attempt at describing aspects of the conditional distribution PY] %

We limit ourselves to regression functionals 6(-) that allow plug-in estimation
0 := 0(P) where P := (1/N)Y" 5(Y 9 is the empirical distribution. If necessary

we may write Py for P and Oy for 6.

4.2 The Conditional Parameter of Model-Trusting Regression

This subsection generalizes the “conditional parameter” 3(X) of Part I, Sec-
tion 5. It will be denoted 6(X). For a regression functional written as 8(B, 3 ) =
O(Pﬂ %z ® PX) according to Section 3, the conditional parameter is obtained by
partial plug-in of the empirical distribution 13;( of the regressors, as shown in the

center line of the following overview of notations:

0(P) = 6(P, 3 ® Py),
0(X) = 0(R 3@ Py). Py=(1/N)Yix,
6 = 6(P).

It is legitimate to write 8(X) because X and 13)2. contain the same information;
the conditional response distribution Py] % is implied and not shown. The main
point is:

e In model-trusting theories that condition on X, the target of estimation
is 8(X). They assume 6(X) is the same for all acceptable X.

e In model-robust theories that do not condition on X, the target of estima-
tion is O(P), whereas 8(X) is a random quantity (see Corollary 4.3 below).

The above definitions can be made more concrete by illustrating them with the
specific ways of defining regression functionals of Section 2:

e Functionals defined through minimization of objective functions:

—

0(P) = argming Ep[L(6;Y,X)],
6(X) = argming § 3_; Ep, [ £(6;Y;, Xi) | X 1],

0 = argming + >, £(0; Y], X,).

Y\x

imsart-sts ver. 2014/07/30 file: Buja_et_al_Conspiracy_Part_II.tex date: December 10, 2016



16 A. BUJA ET AL.

e Functionals defined through estimating equations:

)

0(P): Ep[4(6;Y,X)] -
0X): w> EPYlXW(@;E,Xz‘HXi] =
6 : %Zﬂb(@,}’l,)_ﬂ) = 0.

0
0

)

These specialize to normal equations for linear OLS by (4).

4.3 Estimation Offsets

In Part I we defined what we call “estimation offsets.” With the availability of
0(X) for arbitrary regression functionals, these can be defined in full generality:

Total EO = 0—-0(P),
Noise EO = 0-0(X),
Approximation EO := 0(X)—0(P).

The total EO is the deviation of the plug-in estimate from its population target.
The noise EO is the component of the total EO that is due to the conditional
distribution Y|X' . The approximation EO is the component due to the random-
ness of X in the presence of misspecification. These facts will be elaborated in
what follows.

The approximation EO lends itself for another characterization of well-specifi-
cation in the sense of Section 3:

Proposition 4.3: Assume Py +— O(PY]X ® Pg) is continuous in the weak topol-
ogy. Then 0(-) is well-specified for Pz iff (X)—0(P)=0 for all acceptable X.

Proof: If 6(-) is well-specified in the sense of Section 3, then
0(X) = (P, 3 © Pg) = 6(B,3x ®Pg) = 6(P).

The converse follows because the empirical regressor distributions 135( (for N —
oo) form a weakly dense subset in the set of all regressor distributions, and the
regression functional is assumed continuous in this argument. [

A fine point about this proposition is that X is not meant as random but as
a variable taking on all acceptable regressor datasets of arbitrarily large sample
sizes. On the other hand, here are two consequences when X is random:

Corollary 4.3: Same assumptions as in Proposition 4.3.
o Fized-X and random-X theories estimate the same target iff 0(-) is well-
specified for PY]X'
o 0(-) is well-specified for Pz iff V[0(X)] =0 for all acceptable Py .

The first bullet confirms that the notion of well-specification for regression
functionals hits exactly the point of agreement between theories that condition
on the regressors and those that treat them as random. The second bullet leads
the way to the fact that a misspecified regression functional will incur sampling
variability originating from the randomness of the regressors.

imsart-sts ver. 2014/07/30 file: Buja_et_al_Conspiracy_Part_II.tex date: December 10, 2016



MODELS AS APPROXIMATIONS II 17

4.4 Deterministic Association Annihilates the Noise EO

Whereas the concept of well-specification addresses the case of vanishing ap-
proximation EQO, one can also consider the dual concept of vanishing noise EO.
Here is a sufficient condition under which the noise EO vanishes for all regression
functionals:

Proposition 4.4: If Y:f()_f) is a deterministic function of X, then
0 —0(X) o for all regression functionals.

Proof: The conditional response distribution is PY] = 0y—f (@), hence the

X=3
%_z and 13)2. is P: P % ® A;( = P. Tt follows

that 6(X) = (P, © Pg) = 0(P) = 6. O

joint distribution formed from PYW

=

¢

The proposition illustrates the fact that the noise EO is due to “noise”, that
is, variability of Y conditional on X. Thus, although less transparent than in the
case of linear OLS, the conditional response distribution Y|}_(L is the driver of the
noise EO.

In Part I, Section 6, we used deterministic responses as illustrations where
there is no noise EO and the only sampling variability in  stems from the ran-
domness of the regressors interacting with misspecification — the second of the
two “conspiracy” effects of the title of Part I.

4.5 Approximating Estimation Offsets with Influence Functions

For linear OLS, Definition and Lemma 5 in Part I exhibited an intuitive corre-
spondence between the total, noise and approximation EO on the one hand and
the population residual, the noise and the nonlinearity on the other hand. No such
direct correspondence exists for general types of regression. The closest general
statement about EOs one can make is in terms of influence functions; for linear
OLS it translates to this correspondence. Using again the notations IF (y, Z) and
E[IF(Y,X)|X = & = IF(&) for the full and the partial influence functions of
6(-) (Section 3.4), and assuming asymptotic linearity of @(-), the EOs have the
following approximations to order op(1/v/N):

Total EO: 6—6(P) LS IF(Y, X)),

Q

Q

(8) | Noise EO: 0-0(X) Ly, (IF(Y;, X,)—E[IF(Y, XZ-)IXZ-]) :

Approz. EO:  0(X)—6(P) ~ + >, E[IF(Y, X)X,

The first and the third approximation are standard under the assumption of
asymptotic linearity because IF(y, &) is the influence function for 6(P), while
IF (&) = E[IF(Y,X)|X = ] is the influence function of 6(X). The second
approximation is the difference of the first and the third. The approximations to
the noise EO and the approximation EO are orthogonal to each other, hence the
two EOs are asymptotically uncorrelated. — These approximations lead straight
to the CLTs of the next section.

5. MODEL-ROBUST CENTRAL LIMIT THEOREMS DECOMPOSED

The purpose of the following CLT's is to decompose the asymptotic sampling
variability of plug-in estimates into two parts:
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e a contribution due to the conditional variability of the response, and
e a contribution due to the marginal variability of the regressors,

the latter being the “conspiracy contribution” to sampling variability caused by
regressor randomness interacting with misspecification in the sense of Section 3.

5.1 CLT Decompositions Based on Influence Functions

As in Section 4.5 consider a regression functional @(P) that is asymptotically
linear with influence function IF(y,#) and partial influence function IF (&) =
E[IF(Y, X)|X =]. The EOs obey the following CLT's:

V@ -6P) 2 N (0 VIF(Y, X)),

VN (@ -0X) 2 N(O, E[V[IF(Y,X*HXH),

VN ((X) - 0(P)) 2 N(O, V[E[IF(Y,X'HXH).

These are immediate consequences of the assumed asymptotic linearities of Sec-
tion 4.5. The asymptotic variances of the EOs follow the canonical decomposition

VIIF(Y,X)| = E[V[IF(Y,X)| X]] + VIE[IF(Y,X) | X]],

the three terms being the asymptotic variance-covariance matrices of the total,
the noise and the approximation EQO, respectively. Implicit in this Pythagorean
formula is that IF(Y, X)—E[IF(Y,|X) and E[IF(Y,|X) are orthogonal to each
other, which implies by (8) that the noise EO and the approximation EO are
asymptotically orthogonal. For linear OLS this orthogonality holds exactly for
finite N due to (6) and (12) in Part I V[3—8(X), 8(X)—B(P)] = 0.

The following corollary is a restatement of Proposition 3.4, but enlightened by
the fact that it relies on the asymptotic variance of the approximation EO.

Corollary 5: The regression functional 6(-) is well-specified for PY])Z’ iff the
asymptotic variance of the approximation EO vanishes for all acceptable Py .

Proof: Using careful notation the condition says V p, [E P,z [IF(Y,X)|X]] =0

for all acceptable Pg. This in turn means EPY\X [IF (Y, X)|X = &) = 0 for all &,
which is the condition of Proposition 3.4. [J

5.2 CLT Decompositions for EE Functionals

For EE functionals the influence function is IF'(y, &) = A(6)714(0;y, ) where
0 = 0(P) and A(0) := VoEp[y(6;Y, X)] is the Jacobian of size ¢ X ¢, ¢ =
dim(¢p) =dim(@). Then the CLTs specialize to the following:

—

VN (@ -8) 2 N (o, A0 V[(8;Y, X)] A(H)’_1>

VN (6 -0(X)) =
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The first line is Huber’s (1967, Section 3) result. The asymptotic variances have
the characteristic sandwich form. It is natural that they are related according to

Vip(6;Y,X)] = E[V[p(8;Y,X)| X]]+ V[E[¥(:Y,X)| X]],

where on the right side the first term relates to the noise EO and the second term
to the approximation EQO.

Linear OLS is a special case with IF (y, Z) = E[X X'~} (&& B—%y), ¥(B;vy, %)
= &&' B — Ty and A = E[X X']. Hence the CLTs of Part I, Proposition 7.

5.3 Implications of the CLT Decompositions

The most impactful part of the CLT decompositions concerns the approxima-
tion EO because it may be subject to confusions: Misspecification, in traditional
parametric modeling, is sometimes called “model bias” which, due to unfortu-
nate terminology, may suggest a connection to estimation bias, E[@y] — 6(P).
Importantly, there is no connection between the two notions of bias. Estimation
bias vanishes at a rate faster than 1/v/N and does not contribute to standard
errors derived from asymptotic variances. Model bias, on the other hand, which
is misspecification, generates a contribution to the standard error, and this con-
tribution is asymptotically of order 1/ VN, the same order as the better known
contribution due to the conditional noise in the response. This is what the CLT
decompositions reveal. In summary:

Model bias/misspecification does not create estimation bias; it creates sam-
pling variability to the same order as the conditional noise in the response.

To make sense of this statement it is necessary to assume the point of view that
all quantities of interest are regression functionals: Their plug-in estimates have
two sources of sampling variability, both of the same order, the better known
source being PY] % and the lesser known source being Py in conjunction with
model bias/misspecification.

6. PLUG-IN/SANDWICH ESTIMATORS VERSUS M-OF-N
BOOTSTRAP ESTIMATORS OF STANDARD ERROR

6.1 Plug-In Estimators are Limits of M-of-N Bootstrap Estimators

In Part I, Section 8, it was shown that for linear OLS there exists a connection
between two ways of estimating asymptotic variance: the sandwich estimator for
sample size N is the limit of the M-of-IN bootstrap as M — oo, where bootstrap
is the kind that resamples x-y cases rather than residuals. This connection holds
at a general level: all plug-in estimators of standard error are limits of bootstrap
in this sense.

The crucial observation of Part I goes through as follows: Because resampling
is iid sampling from some distribution, there holds a CLT as the resample size
grows, M — oo. The distribution being (re)sampled is the empirical distribution
Py = (1/N) >~ 0(y;,@;), Where N is fixed but M — oo (causing ever more dupli-
cates of cases). The following holds for bootstrap resampling of any well-behaved
statistical functional, be it in a regression context or not:

Proposition 6: Assume the regression functional 0(-) is asymptotically normal
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for a sufficiently rich class of joint distributions P = P, 4 with acceptable re-
gressor distributions Pg as follows:

NY2(@y —0(P)) = N(0, AVIP;0(-)]) (N — o0).

Let a fized dataset of size N with acceptable regressors be represented by the
empirical measure Py. Then a CLT holds for the M -of-N bootstrap as M — oo,
with an asymptotic variance obtained by plug-in. Letting 0y, = 6(Pyy) where Py
1s the empirical distribution of a resample of size M from Py, we have:

MY2(0 —by) 2 N(O, AV[PN;H(-)]) (M — 00, N fived).
The proposition contains its own proof.

Corollary 6: The plug-in sandwich estimator for an EE functional is the asymp-
totic variance estimated by the M-of-IN bootstrap in the limit M— oo for a fized
sample of size N.

6.2 Arguments in Favor of M-of-N Bootstrap Over Plug-In Estimators

A natural next question is whether the plug-in/sandwich estimator is to be
preferred over M-of-N bootstrap estimators, or whether there is a reason to prefer
some form of M-of-N bootstrap. In the latter case the follow-up question would be
how to choose the resample size M. While we do not have any recommendations
for choosing a specific M, there exist various arguments in favor of some M-of-N
bootstrap over plug-in/sandwich estimation of standard error.

A first argument is that bootstrap is more flexible in that it lends itself to
various forms of confidence interval construction that grant higher order accuracy
of coverage. See, for example, Efron and Tibshirani (1994) and Hall (1992).

A second argument is related to the first but in a different direction: Boot-
strap can be used to diagnose whether the sampling distribution of a particular
functional 6(-) is anywhere near asymptotic normality for a given sample size N.
This can be done by applying normality tests to simulated bootstrap values 6,
(b=1,...,B), or by displaying these values in a normal quantile plot.

A third argument is that there exists theory that shows bootstrap to work for
very small M compared to IV in some situations where even conventional N-of-N
bootstrap does not work. (See Bickel, G6tze and van Zwet (1997) following Politis
and Romano (1994) on subsampling.) It seems therefore unlikely that the limit
M — o for fixed N will yield any form of superiority to bootstrap with finite M.

A fourth argument is based on a result by Buja and Stuetzle (2016) which will
be elaborated in the remainder of this subsection. The result states that so-called
“M-bagged functionals” are “smooth” in a certain sense, the smoother the smaller
the resample size M. In this sense, the limit M — oo is the least smooth choice
that is more likely to behave erratically than all choices of finite M. We next define
“bagged functionals”, explain the meaning of “smoothness”, and describe the link
of this result to the issue of “bootstrap versus plug-in/sandwich estimators”.

“Bagging” is “bootstrap averaging” as introduced by Breiman (1996). While
bootstrap and bagging are applied in practice to empirical distributions PN, we
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need a definition of bagging for arbitrary distributions. Following Buja and Stuet-
zle (2016) the M-bagged functional 85 (-) associated with () is

M
1 - N
05 (P):= Ep|0(Py)], Pu= i 'EMj Sy, %y (Yi, Xi) ~ P iid.

The M-bagged functional 85 (P) is the average of the functional 6(-) over em-
pirical measures of M iid observations from P. These M “observations” are not
actual observations but rather hypothetical iid draws from P for the purposes of a
mathematical construction. The definition of an M-bagged statistical functional
provides a target of estimation when the bag size M is held fixed and N — oc.

Bagged functionals have the remarkable property that their von Mises expan-
sions are finite, irrespective of the nature of the original functional 8(-). Von Mises
expansions are based on generalized influence functions of any order, where the
first order term is the average of the first order influence function (Section 4.5)
that drives asymptotic normality (Section 5). Higher order terms reflect “interac-
tions” similar to U-statistics (actually, V-statistics) based on pairs, triples, ... of
observations. It is intuitively clear that an M-bagged functional cannot have in-
teractions of order higher than M. This is confirmed by Buja and Stuetzle (2016)
to whom we refer for the explicit form of the expansion:

Proposition: M -bagged functionals have von Mises expansions of length M+1.

This proposition suggests a notion of smoothness for bagged functionals that
is analogous to the natural notion of smoothness of polynomials: A polynomial is
the smoother the lower its degree; similary, a bagged functional is the smoother
the lower its bag size M. In both cases it is the length (or better: “shortness”) of
the expansion that is a measure of “smoothness.”

The connection of M-bagged functionals to the present issue is that boot-
strap estimators of sampling variance can be seen as plug-in estimators of certain
variance functionals. To see this we define the normalized M-bootstrap vari-
ance functional BVj,[P;6(-)] associated with €(-), which is obtained essentially
by replacing expectation with variance in the definition of the M-bagged func-
tional 87 (P):

BVi([P;6()] = M-Vp[0(Pu)).

The connection with asymptotic variance is trivially as follows:

AV [P;0(-)] = lim BVy[P;0(.)].
M—o0

Both the M-of-N boostrap estimator and the plug-in/sandwich estimator of
standard error are obtained by replacing P with the empirical distribution Py
of an observed sample of size N, and renormalizing to sample size N. For scalar

functionals 0(-) the standard error estimates are therefore:

o boot 1 A 1/2 ssand 1 > 1/2

In this interpretation both the M-of-N bootstrap and the plug-in/sandwich esti-
mator are plug-in estimators, the difference being in the variance functionals to
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which plug-in is applied. These variance functionals are, respectively:
(9) P — BVy[P;0()] and P+ AV[P;0(-)].

The bootstrap variance functionals are trivially shown to be a “function of bagged
functionals” by rewriting them as

BVi[P;:6(-)] = M-(Ep[0(Py)’] - Ep[6(Pu)]*),
which are a function of the M-bagged versions of the functionals 6(-)? and 6(-):
(0°)1(P) = Ep[0(Py)?] and 63 (P) = Ep|0(Py)).

Therefore, if smoothness of M-bagged functionals is measured by the shortness
of the von Mises expansion, the M-bootstrap variance functional BVj,[P;0(-)] is
the smoother the smaller the resampling size M is.

The practical consequence of the preceding argument is that, in terms of sam-
pling variability, bootstrap standard errors are likely to be more stable than
plug-in/sandwich estimators of standard error. Most likely the greatest stability
gains are obtained for very small resampling sizes compared to N, if the results of
Politis and Romano (1994) for sub-sampling and Bickel et al. (1997) for bootstrap
sampling are a guide.

Whether this stability mitigates the problem of outlier /heavy-tail non-robustness
of sandwich estimators noted in Part I, Section 13, we would not know. As noted
earlier, neither do we have specific recommendations for the choice of the resample
size M in a given data analytic situation.

7. SUMMARY AND CONCLUSION

This article completes important aspects of the program set out in Part I.
It pursues the idea of model robustness to its conclusion for arbitrary types of
regression based on iid observations. The notion of model robustness coalesces
into a model-free theory where all quantities of interest are statistical functionals,
called “regression functionals”, and models take on the role of heuristics to suggest
objective functions whose minima define regression functionals defined on largely
arbitrary joint (Y,)_(L ) distributions. In this final section we recount the path
that makes the definition of mis- and well-specification for regression functionals
compelling.

To start, an important task of the present article has been to extend the two
main findings of Part I from linear OLS to arbitrary types of regression. These
findings are the two “conspiracy effects” whereby nonlinearity and randomness
of the regressors combine (“conspire”)

(1) to cause the target of estimation to depend on the regressor distribution;
(2) to cause N~/2 sampling variability to arise that is wholly independent of
the conditional randomness of the response.

It was intuitively clear that these effects would somehow carry over from linear
OLS to all types of regression, but it wasn’t clear what would take the place
of “nonlinearity”, a notion of first order misspecification peculiar to fitting lin-
ear equations and estimating linear slopes. In attempting to generalize Part I,
a vexing issue is that one is looking for a framework free of specifics of fitted
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equations and additive stochastic components of the response. Attempts at di-
rectly generalizing the notions of “nonlinearity” and “noise” of Part I lead to
dead ends of unsatisfactory extensions that are barely more general than linear
OLS. This raises the question to a level of generality in which there is very little
air to breathe: the objects that remain are a regression functional 6(-) and a joint
distribution PY’ %- Given these two objects, what do mis- and well-specification
mean? A step toward an answer is to leverage the basic structure that defines a
regression problem: the asymmetric analysis of the association between Y and X
in terms of the conditional response distribution P, ¢. This suggests taking the
joint distribution PY, % apart and analyze the issue of mis- and well-specification

in terms of (), PY] % and Pg. The solution, finally, to

e establishing a compelling notion of mis- and well-specification at this level
of generality, and
e extending the two “conspiracy effects” to arbitrary types of regression,

is to look no further and use the first conspiracy effect as the definition of
misspecification: dependence of the regression functional on the regressor dis-
tribution. The second effect is then a corollary of the definition: If the tar-

get B(P) = lS’(Pw % ® Pg) is non-constant in Pg, so is the conditional target

0(X) = B(PY] 2 ® PX), which hence is random and contributes to the overall

sampling variability of the estimate 8 =6(P).

Intuitively this notion of misspecification means that whatever is measured by
0(-) depends on where in regressor space the observations have fallen. Because
most regressions consist of fitting some functional form of the regressors to the
response, misspecification of the functional form is equivalent to misspecification
of its parameters viewed as regression functionals: depending on where the re-
gressors fall, the misspecified functional form needs adjustment of its parameters
to achieve the best approximation over the distribution of the regressors.

It is a peculiar fact that under misspecification the regressor distribution Pg
moves center stage together with PY] %- This is unexpected because regression,
as traditionally understood, attempts to describe aspects of the conditional re-
sponse distribution PY] % Wwhile essentially sidelining the regressor distribution by
conditioning on the observed regressors. The justification for conditioning is the
ancillarity argument applied to the regressors, but as was shown in Part I this ar-
gument no longer applies under misspecification. Regressor ancillarity has a curi-
ous mirror image in the present theory of regression functionals: Well-specification
means that for the conditional response distribution at hand, the regression func-
tional is not really a function of the regressor distribution, thereby providing a
justification for sidelining it. However, in a realistic view of regression analysis,
well-specification is a mere ideal, while degrees of misspecification are the re-
ality. There exists therefore little justification for conditioning on the observed
regressors and for treating them as fixed because implicit is the assumption of
well-specification.

With degrees of misspecification accepted as the reality in regression analysis,
we of course do not advocate carelessness in its practice. It should always be
mandatory to perform due diligence in terms of regression diagnostics, and in
fact we proposed new types of diagnostics in Section 3.5. There is, however, an
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argument to be made to feel less guilty about using simple models when they
capture essential features of the data. In addition, there is an argument to be
made in favor of using statistical inference that is model-robust, and to this end
one can use either z-y bootstrap estimators or plug-in/sandwich estimators of
standard error. Between the two we advanced some arguments in favor of using
bootstrap over plug-in/sandwich estimators. More importantly, however, both
approaches to inference are in accord with the following important principle:
When regressors are random, they should be treated as random.

Acknowledgments: We are grateful to Gemma Moran and Bikram Karmakar
for their help in the generalizations of Section 4.2.
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APPENDIX

A. Proper Scoring Rules, Bregman Divergences and Entropies

General Theory: We describe objective functions called “proper scoring rules”,
which generalize negative log-likelihoods, and associated Bregman divergences,
which generalize Kullback-Leibler (K-L) divergences. Proper scoring rules can be
used to extend the universe of regression functionals based on working models.

We begin by devising discrepancy measures between pairs of distributions
based on axiomatic requirements that can be gleaned from two properties of K-L
divergences: Fisher consistency at the working model and availability of plug-in
for “empirical risk minimization” (machine learning terminology). The resulting
functionals will be called “proper scoring functionals.”

Denoting a discrepancy measure between two distributions by D(P,Q), the
intended roles of the two arguments are that P is the actual data distribution and
Q is a member of a working model. Fisher consistency of a minimum discrepancy
functional follows from the following requirements:

(A) D(P,Q)>0 with equality iff P=Q.

The “only if” part in the second clause is essential. Other properties such as
symmetry and triangle inequalities are not needed and would be too restrictive.

As for the availability of plug-in estimation, it would follow from a structural
property such as dependence of D(P, Q) on P only through its expectation E p|],
whose plug-in estimate is the empirical mean. Other types of plug-in exist, for
example for quantiles, in particular medians. Yet other cases, such as Hellinger
distances, require density estimation for plug-in, which adds a layer of complexity.
In what follows we will impose the strong condition that D(P,Q) depends on
P essentially only through Epl[-], but this requirement only concerns the part of
D(P, Q) that is relevant for minimization over working model distributions Q.
We can use the K-L divergence as a guide: In Dgr,(P,Q) = Ep[—logq(Y)] —
Ep[—logp(Y)], the second term requires for plug-in a density estimate of p(y),
but this term does not depend on @, hence is irrelevant for minimization over Q.
By analogy we impose the following structural form on the discrepancy measure:

(B) D(P,Q) = Ep[S(Y,Q)] - H(P) .
This condition, combined with condition (A), constrains D(P,Q) to be a so-
called “Bregman divergence”. The following structure falls into place:
e Define S(P,Q) := Ep[S(Y,Q)]. Then S(P,P) = H(P) due to (A).

e The term S(Y,Q) is a so-called “strict proper scoring rule”, charac-
terized by S(P,Q) > S(P, P), with equality iff P = Q. This is a direct
translation of (A) applied to D(P,Q) = S(P,Q) — S(P, P).

e The term H(P) is an “entropy” as it is a strictly concave functional of P.
Its upper tangent at tangent point Q is P — S(P, Q) due to (A). Also, (A)
excludes tangent points other than @, hence renders H (P) strictly concave.

Strict proper scoring rules S(y, Q) generalize negative log-likelihoods. For insight-
ful background on proper scoring rules, see Gneiting and Raftery (2007) (but note
two reversals of conventions: their S(Q, P) corresponds to our —S(P,Q)).
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Examples of Proper Scoring Rules — Density Power Divergences: A one-parameter
family of strict proper scoring rules is as follows:

—¢*(y)/a+ [¢F*du /(1 +a) for a#0,-1,
Sa(y, Q) = —log(q(y)) for a=0,
1/q(y) + [log(q) du for a=-1.

These include proper scoring rules derived from the “density power divergences”
of Basu et al. (1998) for o > 0, the negative log-likelihood for a = 0, and a
proper scoring rule derived from the Itakura-Saito divergence for a =—1. The two
logarithmic cases (=0, 1) form smooth fill-in in the manner of the logarithm in
the Box-Cox family of power transforms, which makes the family well-defined for
all @« €IR. The case a=1 corresponds to the Ly distance Do(P, Q) = [(p—q)*du;
its proper scoring rule is S(y,Q) = —q(y) + [¢?du/2 and its entropy is the
Gini index H(P) = — [ p?dp/2. The power « is a robustness parameter, in the
meaning of insensitivity to tails: robustness is gained for « T and sensitivity to
tail probabilities for o |. Basu et al. (1998) show that for « > 0 the influence
function is redescending for the minimum divergence estimator of the normal
working model. For a@ < —1 the divergence is so sensitive to small probabilities
(hence the opposite of robust) that model densities ¢(y) need to have tails lighter
even than normal distributions.

Proper Scoring Rules for Regression: When applying a proper scoring rule
S(y, Q) to regression, scoring is on the conditional response distributions Qﬂ X—i:0
= Q(dy|#; 0) in light of a response value y at &. The resulting objective function
is therefore:

‘C(ea Y, a_f) = S(y7 me(:@‘;g) )
which is used to construct a regression functional with argument P = B, 3 by
6(P) := argming.g Ep[L(8;Y, X)].
Fisher consistency follows from the fact that if PY| ¥z = Qm X0y then 6
minimizes the objective function conditionally at each & due to proper scoring:

(10) Ep

Y| X =%

[£(60;Y,&)] < Ep, . _[L(6;Y,&)] VO, V.

=&

The same holds after averaging over arbitrary regressor distributions Py (dZ):
Ep|L(60;Y,X)] < Ep[L(6;Y,X)] V6,

and hence 8(P) = 0.

Pointwise Bregman Divergences from Convexr Functions: We illustrate one
simple way of constructing what one may call “pointwise” Bregman divergences
to convey the role of convex geometry. (We use here convex rather than concave
functions, but this is immaterial for the construction.) If ¢(q) is a strictly convex
smooth function, define the associated discrepancy between two values p and ¢
(in this order) to be d(p,q) = ¢(p) — (¢(q) + ¢'(¢)(p — q)). The term in parens
is the subtangent of ¢(:) at ¢ as a function of p, hence d(p,q) >0 holds due to
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convexity, and d(p,q) =0 iff p=q due to strict convexity. Note d(p, q) is not gen-
erally symmetric in its arguments. The associated Bregman divergence between
distributions P and @ is obtained by applying d(p, q) to the respective densities
p(y) and ¢(y), integrated wrt the dominating measure v(dy):

= [ ot - / Saw)vidy) ~ [ ¢ aw)ow) - aw)(dy)
= —H(P)+ pl¢'(q (Y))]+EQ "(a(Y))],
where H(Q) = — [ ¢(q dy) is the associated entropy and

S(y, Q) = —¢/(a(v)) + Eq[¢'(a(Y))] + H(Q).
Special cases: K-L divergence for ¢(q)=qlog(q); Lo distance for ¢(q)=q>.

Density Power Divergences in Greater Detail: Applying the preceding subsec-
tion to power transformations, suitably transformed to convexity following the
Box-Cox transformation scheme, one obtains the family of density power diver-
gences. The following is a one-parameter familiy of convex functions defined for
all ae1R:

7t/ (a(14+a)) —q/a + 1/(1+a) for a#0,-1,
Palq) =4 qlog(q) —q+1 for a=0,
—log(q) +q—1 for a= -1,

The linear terms in ¢ and the constants are irrelevant but useful to normalize
$a(1)=0 and ¢/ (1) =0 for all & € R and to achieve the logarithmic limits for
a=0 and a=-—1. The derivatives are:
¢“/a—1/a for a#0,—1,
Plq) = ¢ log(q) for a =0,
—1/q+1 for a= -1,
The associated Bregman discrepancies are:

pt/(a(l+a)) + ¢""/(1+a) —pg*/a for a#0,-1,
da(p,q) = § plog(p/a) +q—p for =0,
—log(p/q) +p/q for o=-1,
Integrated to form Bregman divergences for pairs of densities p=p(y) and ¢=q(y)
of P and @Q, respectively, one obtains:

[ @ /(a(l+a)) + ¢'*T*/(1+a) —pg*/a) du) for a#0,-1,
Do(P,Q) =4 [plog(p/q)du for a=0,
— [ (log(p/q) + p/q) dp for a=—1,

The proper scoring rules associated with density power divergences (neglecting
constants) are as follows:

—q¢*(y)/a+ [¢Tdu/(1+a) for a#0,-1,
Sa(y,Q) = —log(q ( ) for a=0,
1/q(y) + [log(q) du for a=—1.
The associated entropies are as follows:
— [¢"**du/(a(1+a)) for a##0,-1,

Ho(Q) = ¢ — [ qlog(q) du for =0,
[ log(q) du for a=-1.
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B. Partial Influence Functions with regard to Regressor Distributions

Remark on notation: We have a need to explicitly note the distribution at
which the influence function is created. Recall the definition from Section 3.4:

IF(y,Z; P) := O((1—t)P +t(y z))-

%‘tzo
This definition can be mapped to the interpretation of regression functionals as
having two separate arguments, PY] % and Pg by splitting the pointmass d(, z)
off to the two arguments: The conditional response distribution is (1—t) P, Vx—zT
td, at this particular &, leaving those at all other & unchanged; the regressor
distribution is changed to (1—t)Pg + tdz.

We show that the partial influence functions wrt Py is a shown in Proposi-
tion 3.4. We start with the integrated form of the derivative:

IF(P';P) = (1—t)P +tP') = / IF(y, &; P) P'(dy, d%).

a‘t:oe

which uses the fact that [ IF(Y, X:P)dP = 0. To form the partial influence
function wrt Pg holding B, V% ﬁxed we rewrite the expansion with P, V% being

the same for P’ and P:

d
(11) @\t:o (P ® (1-t)Pg’ + tPg)) //IF y, @) P(dy|dZ) P’ (d&),

which shows that the partial influence function wrt Py is
IF (&; Py) = Ep[IF(Y,X;P)|X = 4.

(We assumed that if Pg is an acceptable regressor distribution, so is a mixture
(1—t)Pg +téz for small ¢t > 0 and any Z.)

To show Proposition 3.4, if we have well-specification, then 8((1—t)P +téz) =
0(P), hence IF(Z; P) = 0. For the converse, we use the following integral repre-
sentation, which is integrating up derivatives along a convex segment:

0(F,x © P ) = 0(F,x © Pg) + /IF(PX’;(l—t)PXthPX’)dt.

As a consequence, if IF(&;(1—t)Pg + tPg’) = 0 for all & at all regressor
distributions, then IF(Pg';(1—t)Pg + tPg ) = 0 for all Py’ and Pg, hence
0(P,x © Py "= 6(P,x ® Py ) for all Pg' andPX. O

C. Miscellaneous Proofs

Proof of Lemma 3.3.3 The “if” part is trivial as it involves taking expectations
wrt arbitrary Pg. The “only if” part follows by observing that for any acceptable

Py with O(PY]X ® Pg) = ) there must exist & for which Ep[t(80;Y, X)|X =

#] # 0. Mixtures Px = (1-t) Pg +tdgz for 0<t <1 will then also be acceptable (see
Section 2.1), but they will not satisfy the EE for 6y, hence 6(-) is not independent
of the regressor distribution for this conditional response distribution. [J
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